Roll No: \square

B.TECH

(SEM I) THEORY EXAMINATION 2020-21

ENGINEERING MATHEMATICS-I

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Qno.	Question	Marks	CO
a.	Prove that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary.	2	1
b.	State Rank-Nullity Theorem.	2	1
c.	State Rolle's Theorem.	2	2
d.	Discuss all the symmetry of the curve $x^{2} y^{2}=x^{2}-a^{2}$	2	2
e.	If $u=f(y-z, z-x, x-y)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$	2	3
f.	If $x=e^{v} \sec u, y=e^{v} \tan u$, then evaluate $\frac{\partial(x, y)}{\partial(u, v)}$.	2	3
g .	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{y / x} d y d x$.	2	4
h.	Calculate the volume of the solid bounded by the surface $\mathrm{x}=0, \mathrm{y}=0$, $x+y+z=1$ and $z=0$.	2	4
i.	Show that the vector $\vec{V}=(x+3 y) \hat{\imath}+(y-3 z) \hat{\jmath}+(x-2 z) \hat{k}$ is solenoidal.		5
j.	State Green's theorem.	2	5

SECTION B

2. Attempt any three of fie following:

Qno.	Question	Marks	CO
a.	Find the invege of the matrix $A=\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$	10	1
b.	If $y=e^{\tan ^{-1} x}$ prove that. $\left(1+x^{2}\right) y_{n}+2+[(2 n+2) x-1) y_{n+1}+n(n+1) y_{n}=0 .$	10	2
c.	If $\begin{gathered} u^{3}+v+w=x+y^{2}+z^{2} \\ u+v^{3}+w=x^{2}+y+z^{2} \\ u+v+w^{3}=x^{2}+y^{2}+z \end{gathered}$,Show that: $\frac{\partial(u, v, w)}{\partial(x, y, z)}=\frac{1-4 x y(x y+y z+z x)+16 x y z}{2-3\left(u^{2}+v^{2}+w^{2}\right)+27 u^{2} v^{2} w^{2}}$	10	3
d.	Evaluate by changing the variables, $\iint_{R}(x+y)^{2} d x d y$ where R is the region bounded by the parallelogram $\mathrm{x}+\mathrm{y}=0, \mathrm{x}+\mathrm{y}=2,3 \mathrm{x}-2 \mathrm{y}=0$ and $3 \mathrm{x}-2 \mathrm{y}$ $=3$.	10	4
e.	Use divergence theorem to evaluate the surface integral $\iint_{S}(x d y d z+$ $y d z d x+z d x d y$) where S is the portion of the plane $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=6$ which lies in the first octant.	10	5

Roll No: \square

SECTION C

3. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	Find non-singular matrices P and Q such that PAQ is normal form. $\left[\begin{array}{lll} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{array}\right]$	10	1
b.	Find the eigen values and the corresponding eigen vectors of the following matrix. $A=\left[\begin{array}{lll} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{array}\right]$	10	1

4. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	Find the envelope of the family of lines $\frac{x}{a}+\frac{y}{b}=1$, where a and b are connected by the relation $a^{n}+b^{n}=c^{n}$	10	2
b.	If $\mathrm{y}=\sin \left(\mathrm{m} \mathrm{sin}^{-1} \mathrm{x}\right)$, find the value of y_{n} at $\mathrm{x}=0$.		

5. Attempt any one part of the following:

Qno.	Question	Marks	Co
a.	Divide 24 into three parts such that continued product of first,square of second and cube of third is a maximum.	10	3
b.	If $u=\sec ^{-1}\left(\frac{x^{3}-y^{3}}{x+y}\right)$,prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 \cot u$.	10	3
	Also evaluate $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$.		

6. Attempt any ore part of the following:

Qno.	Question	Marks	CO
a.	Evaluate the following integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.	10	4
b.	A triangular thin plate with vertices (0,0$),(2,0)$ and (2,4) has density $\rho=$ $1+x+y$. Then find: (i) \quad The mass of the plate. (ii) The position of its centre of gravity G.	10	4

7. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	A fluid motion is given by $\vec{v}=(y \sin z-\sin x) \hat{\imath}+(x \sin z+2 y z) \hat{\jmath}+$ $\left(x y \cos z+y^{2}\right) \hat{k}$.Is the motion irrotational? If so, find the velocity potential.	10	5
b.	Verify Stoke's theorem for the function $\vec{F}=x^{2} \hat{\imath}+x y \widehat{\jmath}$ integrated round the square whose sides are $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$ in the plane $\mathrm{z}=0$.	10	5

